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Liquid structure and potential energy considerations lead to an approximate correspondence 
between the strongly coupled quantal electron plasma near the Wigner transition and its 
classical counterpart. However no such correspondence exists between the coupling strengths 
for the two freezing transitions. Electron tunnelling must therefore be important in determining 
the quantal Wigner transition, a possible quantal picture being proposed by analogy with 
Zener’s idea of classical ‘ring’ diffusion. 

After a great deal of early work on the crystallization of a quantal electron 
plasma, at a critical coupling strength a/ao = rsr say,’ a measuring the 
mean interelectronic spacing Ceperley and Alder2 have established by 
quantal computer simulation that r ,  N 80. In this Letter, we shall compare 
and contrast this strongly coupled quantal assembly near the Wigner 
transition with its classical counterpart. In the classical one-component 
plasma (OCP), the coupling strength is conventionally measured by 

r = e2/uk,T. 

Following the pioneering work of Brush et Hansen4 and later workers5 
have established that the classical OCP freezes when r reaches a value, 
Tc say, of about 180. 

As a useful starting point, we have noticed a marked qualitative similarity 
between the electron pair correlation function g(r )  of the strongly coupled 
electron liquid at rs = a/ao equal to 100, as calculated by Lantto and 
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Siemens6 and shown in Figure la  and the pair function of the classical 
OCP7 at r = 10, given also in Figure lb.  To press this similarity and thereby 
to relate the two coupling strengths in Figures l a  and lb, we consider the 
Fourier transform of g(r )  - I, that is the liquid structure factor S(k). Then, 
in the long wavelength limit thef-sum rule allows one to write the exact 
result * 

lim S(k)  = $ h o , k 2 / 4 m e 2  (2) 
k + O  

for the quantal system, w p  being the electron plasma frequency and n the 
electron density 3/4na3.  The corresponding result for the classical plasma is 

lim S(k)  = k ,  Tk2/4nne2.  ( 3 )  
k+O 

Thus, this immediately suggests a correspondence between classical and 
quantal plasmas 

k,T ++&o,, (4) 

r ++ ( 4 ~ ~ ~ 3 ) ” ~ .  (5 )  

which is equivalent to 

This correspondence, for I‘, = 100 in the example shown in Figure la, yields 
r N 12, which is satisfactory in comparison with Figure lb.  

9 !r> g (r) 

r-io 
0.5 

1 2 3  

6 % 
FIGURE 1 The radial pair distribution function g ( r )  versus r/a in the quantal electron 
plasma at rs = 100 ((a), from Ref. 6 )  and in the classical plasma at r = 10 ((b), from Ref. 7). 
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From g ( r ) ,  the potential energy per electron is determined by the well 
known formula 

r 

U / N  = +ne2 J drCg(r) - l]/r. 

For classical and quantal systems, using the results of DeWitt et a1.' and of 
Ceperley and Alder' respectively, we find again that the correspondence 
given in Eq. (5) gives similar values for the potential energy per particle, 
when measured in units of e2/a.  Thus, although the correspondence in (5) 
above was derived from a long wavelength argument, it turns out still to 
apply semiquantitatively to liquid structure and potential energy. 

However, when we turn to compare the coupling strengths for melting 
of classical and quantal Wigner crystals, a wholly different situation obtains. 
Whereas the critical Y, value for the quantal case, as already mentioned, is 
about 80, the critical r for the classical OCP is about 180. The conclusion 
from these numbers is that from liquid structure arguments the quantal 
crystal is more stable than its classical counterpart. The remaining discussion 
below is therefore focussed on how one can reconcile these apparently 
quite different melting points, at least in a qualitative manner. 

It is helpful to consider first the Lindemann criterion for the melting of 
the quantal Wigner crystal. Following early work by Pines and Nozi&res9 
and by Coldwell-Horsfall and Maradudin," extensive phonon calculations 
on the Wigner lattice were reported by Kugler," and then utilized in the 
Lindemann criterion. His conclusion was that due to disruption by vibra- 
tional energy, the Wigner crystal ought to melt at  an rs value which is an 
order of magnitude greater than the Ceperley and Alder finding.2 Though 
precise numerical values are difficult to obtain, the main point for our 
present discussion is that the kinetic energy of the localized electrons in a 
purely vibrational model must be too large, reduction clearly being essential 
to further stabilize the quantal crystal as required by the Ceperley-Alder 
results. 

What is needed, therefore, is a mechanism whereby electron delocalization 
can occur, but which still retains the basic structural features of the insulating 
Wigner crystal. Though, as discussed above, structure determines the 
potential energy, the virial theorem links potential with kinetic energy. The 
model we advocate is to retain the insulating character of the Wigner 
crystal by allowing electron rotational degrees of freedom to play a role, 
through a mechanism somewhat analogous 'to that proposed long ago by 
Zener.12 His idea was to consider a ring of atoms undergoing classical 
diffusive motions in unison. Of course, his process was a thermally activated 
one, and, to our knowledge, the activation energy is sufficiently high in 
classical crystals so far examined that diffusion proceeds dominantly through 
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other mechanisms. However, in our case, such rotational motions can 
occur by quantum mechanical tunnelling at T = 0. This mechanism will 
delocalize electron wave functions from the localized Wigner gaussian 
orbitals,’ and, equally important, will retain the insulating T = 0 character 
of the Wigner crystal by the use only of closed loops in the delocalized 
process. In making the above model quantitative, it is important to consider 
carefully electron spin, the elementary picture of the Wigner crystal being 
one of a Nee1 antiferromagnet, with upward spin electrons on the sites of 
one simple cubic lattice and downward spins on the other interpenetrating 
simple cubic lattice. 

In summary, we have shown that the correspondence between a strongly 
coupled quanta1 electron liquid near the Wigner transition and the classical 
OCP, embodied in the relation (5) above, is borne out semiquantitatively for 
(a) liquid structure and (b) potential energy. However, such a correspondence 
cannot relate melting criteria in the two cases. We have therefore proposed a 
model in which electrons are delocalized by ‘ring diffusion’. This must 
have the implication that, as the Wigner crystal transition is approached 
from r ,  > rsc ,  the Neel-type antiferromagnetic array of electron spins on a 
body-centred cubic lattice described above must be relaxed: according to 
our proposal by rotational interchange of electrons with opposite spins. 
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